equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
| Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
|---|---|---|---|---|---|
| Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
| Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
| Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
| Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
O oscilador harmônico quântico é o análogo mecânico quântico do oscilador harmônico clássico. É um dos sistemas modelo mais importante em mecânica quântica, já que qualquer potencial pode ser aproximado por um potencial harmônico nas proximidades do ponto de equilíbrio estável (mínimo). Além disso, é um dos sistemas mecânico quânticos que admite uma solução analítica precisa.
Oscilador harmônico monodimensional
Hamiltoniano, energia e autofunções
No problema do oscilador harmônico monodimensional, uma partícula de massa está submetida a um potencial quadrático
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////. Em mecânica clássica se denomina constante de força ou constante elástica, e depende da massa da partícula e da frequência angular .
O Hamiltoniano quântico da partícula é[1]:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
onde é o operador posição e é o operador momento . O primeiro termo representa a energia cinética da partícula, enquanto que o segundo representa sua energia potencial. Com o fim de obter os estados estacionários (ou seja, as autofunções e os autovalores do Hamiltoniano ou valores dos níveis de energia permitidos), temos que resolver a equação de Schrödinger independente do tempo
- .
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Pode-se resolver a equação diferencial na representação de coordenadas utilizando o método de desenvolver a solução em série de potências. Se obtém assim que a família de soluções é[2]
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
onde representa o número quântico vibracional. As primeiras seis soluções () se mostram na figura da direita. As funções são os polinômios de Hermite:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Não se devem confundir com o Hamiltoniano, que às vezes se denota por H (ainda que é preferível utilizar a notação para evitar confusões). Os níveis de energia são
- .
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Este espectro de energia destaca por três razões. A primeira é que as energias estão "quantizadas" e somente podem tomar valores discretos, em frações semi-inteiras , , , ... de . Este resultado é característico dos sistemas mecânico-quânticos[2].
A segunda é que a energia mais baixa não coincide com o mínimo do potencial (zero neste caso). Assim, a energia mais baixa possível é , e se denomina "energia do estado fundamental" ou energia do ponto zero.
A última razão é que os níveis de energia estão igualmente espaçados, ao contrário que no modelo de Bohr ou a partícula em uma caixa.
Convém destacar que a densidade de probabilidade do estado fundamental se concentra na origem. Ou seja, a partícula passa mais tempo no mínimo do potencial, como seria de esperar em um estado de pouca energia. A medida que a energia aumenta, a densidade de probabilidade se concentra nos "pontos de retorno clássicos", onde a energia dos estados coincide com a energia potencial. Este resultado é consistente com o do oscilador harmônico clássico, para o qual a partícula passa mais tempo (e portanto é onde seria mais provável encontrá-la) nos pontos de retorno. Se satisfaz assim o Princípio da correspondência.
Aplicação: moléculas diatômicas
Para estudar o movimento de vibração dos núcleos pode-se utilizar, em uma primeira aproximação, o modelo do oscilador harmônico. Se consideramos pequenas vibrações em torno do ponto de equilíbrio, podemos desenvolver o potencial eletrônico em série de potências. Assim, no caso de pequenas oscilações o termo que domina é o quadrático, ou seja, um potencial de tipo harmônico. Portanto, em moléculas diatômicas, a frequência fundamental de vibração será dada por[3]:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
que se relaciona com a frequência angular mediante e depende da massa reduzida da molécula diatômica.
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
| Equação de Schrödinger Dependente do Tempo (geral) |
Na mecânica quântica, o caso de uma partícula em um anel unidimensional é semelhante à partícula em uma caixa[1][2]. A equação de Schrödinger para uma partícula livre que é restrita a um anel[3] (tecnicamente, cujo espaço de configuração é o círculo ) é
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Função de onda
Usando coordenadas polares no anel unidimensional de raio R, a função de onda depende somente da coordenada angular, e assim
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
exigindo que a função de onda seja periódica em com um período (da demanda de que as funções de onda sejam funções de valor único no círculo), e que elas sejam normalizadas leva às condições
- ,
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
e
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Nestas condições, a solução da equação de Schrödinger é dada por
Um problema importante na mecânica quântica é o de uma partícula num potencial esfericamente simétrico, isto é, um potencial que depende apenas da distância entre a partícula e um ponto central definido. Em particular, se a partícula em questão é um elétron e o potencial é derivado da lei de Coulomb, então o problema pode ser usado para descrever um átomo de hidrogênio (um elétron ou íon).
No caso geral, a dinâmica de uma partícula em um potencial esfericamente simétrico é governada por um hamiltoniano da seguinte forma:
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
G = [DR] = .= +
+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
onde é a massa da partícula, é o operador momentum, e o potencial depende apenas de , o módulo do vetor raio; r. As funções e energias da onda quântica (autovalores) são encontradas resolvendo a equação de Schrödinger com este hamiltoniano. Devido à simetria esférica do sistema, é natural usar coordenadas esféricas , e . Quando isso é feito, a equação de Schrödinger independente do tempo para o sistema é separável, permitindo que os problemas angulares sejam tratados facilmente, e deixando uma equação diferencial ordinária em para determinar as energias para o potencial particular em discussão.Antes de se discutir sobre a partícula na caixa, é importante saber que para se resolver este problema, os conceitos e as aplicações dos postulados da mecânica quântica.
1º Postulado: a função de onda A função de onda contém toda as informações para determinar o estado de um sistema. Por isso, ela tem que ser unívoca, contínua e de derivadas contínuas.
2º Postulado: operadores Para toda e qualquer observável física há um operador linear e hermitiano.
- Teorema 1:os autovalores do operador hermitiano são reais.
- Teorema 2: as autofunções de um operador hermitiano são ortogonais.
3º Postulado: valores de observáveis os valores possíveis a ser obtidos por medidas de uma propriedade física observável , são os autovalores da equação de autovalor , em que é o operador que corresponde à propriedade observável e são as autofunções do operador .
4º Postulado: valor médio Sendo uma função de estado do sistema normalizada, logo o valor médio da observável no tempo é:
5º Postulado: evolução temporal O estado de um sistema quântico não perturbado tem sua evolução temporal dada por:
Caixa unidimensional
A versão mais precisa se dá na situação idealizada de uma caixa unidimensional, na qual a partícula de massa m pode ocupar qualquer posição no intervalo [0,L]. Para encontrar os possíveis estados estacionários, é necessário aplicar a equação de Schrödinger independente do tempo em uma dimensão para o problema:
- [1]
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
G = [DR] = .= +
+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
Considerando que o potencial infinito fora da caixa (regiões I e III), o que anula a função de onda, tem-se:
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
G = [DR] = .= +
+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
em que
- é a Constante reduzida de Planck,
- é a massa da partícula,
- é a função de onda estacionária independente do tempo[1] que queremos obter (funções próprias) e
- é a energia da partícula (valor próprio).
Para o interior da caixa, região II, em que o potencial é zero, tem-se:
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
G = [DR] = .= +
+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
Visando garantir o primeiro postulado da mecânica quântica, a função de onda, quando e , tem que ser igual a . Obedecendo às seguintes condições de contorno:
As funções próprias e valores próprios de uma partícula de massa m em uma caixa unidimensional de comprimento L são:equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
G = [DR] = .= +
+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
Nota-se que só são possíveis os níveis de energia quantizados. Além disso, como n não pode ser zero (pois isso implicaria em uma descontinuidade da função e, assim, violando o 1º postulado), o menor valor da energia tampouco pode sê-lo. Essa energia mínima se chama energia do ponto zero e se justifica em termos do princípio de incerteza. Devido à restrição da partícula em mover-se em uma região finita, a variância da posição tem um limite superior (o comprimento da caixa, ). Assim, de acordo com o princípio de incerteza, a variância do momento da partícula não pode ser zero e, portanto, a partícula deve ter uma certa quantidade de energia que aumenta quando a longitude da caixa L diminui.
A densidade de probabilidade () de se encontrar a partícula na caixa difere de acordo com seu estado de energia. A figura ao lado mostra a função de onda da partícula na caixa para cada estado de energia. Elevando essa função ao quadrado, pode-se estimar onde se tem a maior chance de localizar a partícula. Por exemplo: elevando a função de onda de , a chance de se achar a partícula no centro da caixa é grande, mas, conforme for indo para as extremidades da caixa, essa chance diminui até ser nula. Já para , a chance de se encontrar a caixa tanto no centro quanto nas extremidades é nula. A parte negativa da função fica positiva, já que se eleva ao quadrado, e com isso, aparece duas regiões com a mesma densidade de probabilidade. E assim por diante de tal forma que o número quântico aumenta tanto que o comportamento quântico da partícula começa a reproduzir o comportamento clássico, de acordo com o princípio da correspondência.
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
G = [DR] = .= +
+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
G = [DR] = .= +
+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
Na física, uma partícula livre é uma partícula que, em certo sentido, não está vinculada por uma força externa, ou equivalentemente não está em uma região onde sua energia potencial varia. Na física clássica, isso significa que a partícula está presente em um espaço "sem campo". Na mecânica quântica, significa uma região de potencial uniforme, geralmente modulada para zero na região de interesse, uma vez que o potencial pode ser arbitrariamente arranjado para zero em qualquer ponto (ou superfície em três dimensões) no espaço.
Descrição matemática
Partícula livre clássica
A partícula livre clássica é caracterizada simplesmente por uma velocidade fixa v. O momento linear é dado por
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
G = [DR] = .= +
+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
e a energia cinética, que é igual à energia total, é dada por
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
G = [DR] = .= +
+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
onde m é a massa da partícula e v é o vetor velocidade da partícula.
Partícula livre quântica
Uma partícula livre na mecânica quântica (não relativística) é descrita pela equação de Schrödinger livre:
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
G = [DR] = .= +
+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
onde ψ é a função de onda da partícula na posição r e tempo t. A solução para uma partícula com momento p ou vetor de onda k, na freqüência angular ω ou energia E, é dada pela onda plana complexa:
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
G = [DR] = .= +
+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
com amplitude A. Como para todas as partículas quânticas livres ou ligadas, o princípio da incerteza de Heisenberg
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
G = [DR] = .= +
+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
(da mesma forma para as direções y e z) e as relações De Broglie:[1]:
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
G = [DR] = .= +
+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
se aplicam. Como a energia potencial é adotada como zero, a energia total E é igual à energia cinética, que tem a mesma forma da física clássica:
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
G = [DR] = .= +
+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
Há várias equações que descrevem partículas relativísticas: veja equações de onda relativísticas.[2][3][4][5]
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////

Comentários
Postar um comentário